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Localized orbitals based on the Fermi hole
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The Fermi hole provides a direct (non-iterative) method for tansforming
canonical SCF molecular orbitals into localized orbitals. Except for simple
overlap integrals required to maintain orthogonality, this method requires no
integrals over orbitals or basis functions. This method is demonstrated by
application to a furanone (C,H,0,), methylacetylene, and boron trifluoride.
The results of these calculations are compared to those determined by the
orbital centroid criterion of localization.
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1. Transformations of SCF orbitals

The observable properties of any wavefunction composed of a single Slater
determinant are invariant to a unitary transformation of the orbitals occupied in
the wavefunction [1]. Because of this invariance, the observable properties of a
closed-shell self-consistent field (SCF) wavefunction may be described using
canonical SCF orbitals, localized SCF orbitals [2-9], or any other orbitals related
to the canonical SCF orbitals by a unitary transformation.

This paper presents a method for transforming a set of canonical SCF orbitals
into a set of localized orbitals based on the properties of the Fermi hole [10-14]
and the Fermi orbital [15, 16]. Unlike localization methods based on iterative
optimization of some criterion of localization [3-9], the method presented here
provides a direct (non-iterative) calculation of the localized orbital transformation
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matrix. Consequently, this method avoids the convergence problems which are
possible with iterative transformations.

Unlike the extrinsic methods for transforming canonical SCF orbitals into local-
ized orbitals [17-19], the method presented here does not depend on the introduc-
tion or definition of a set of “atomic orbitals””. The method presented here may
also be distinguished from applications of localized orbitals such as the PCILO
method [20-25] in that the latter method does not involve SCF orbitals, and it
is not concerned with the transformation of canonical SCF orbitals into localized
orbitals.

2. Properties of the Fermi hole
The Fermi hole is defined as
Arys 1) = p(r) —2px(ry, 1)/ plr2), (1)

where p(r,) is the diagonal portion of the first order reduced density matrix and
po(ry, r;) is the corresponding part of the second order reduced density matrix
[26]. For the special case of a closed shell SCF wavefunction, the natural
representation of the Fermi hole is the absolute square of the Fermi orbital [15, 16]

A("1§rz)=‘f("1§ "2)]2- (2)
The Fermi orbital is given by
f(rs "2)=[2/P("2)]1/22 gi(r)gi(r), (3)

where the orbitals g,{r) are either the canonical SCF moecular orbitals or any
set related to the canonical SCF molecular orbitals by a unitary transformation.
The Fermi orbital f(#,; r,) is interpreted as a function of r; which is parametrically
dependent upon the position of a probe electron located at r,.

Previous work in this laboratory [15, 27-29] has demonstrated that the Fermi
hole does not follow the prabe electron in a uniform manner. Instead, molecules
are found to possess regions where the Fermi hole is insensitive to the position
of the probe electron. As the probe electron passes through one of these regions,
the Fermi hole remains nearly stationary with respect to the nuclei. These regions
are separated by regions where the Fermi hole is very sensitive to the position
of the probe electron. As the probe electron passes through one of these regions,
the Fermi hole changes rapidly from one stable form to another.

The sensitivity of the Fermi hole to the position of the probe electron is measured
by the Fermi hole mobility function [27-29],

F(r)=F.(r)+ F,(r)+ F,(r) (4)

where



Localized orbitals based on the Fermi hole 281

4

Fig. 1. The Fermi hole mobility function F(r) for the formaldehyde molecule H,CO based on the
geometry and double zeta basis set of Ref. [41]. The locations of the nuclei are indicated by (+)
signs. The contours represent mobility function values of 0.1, 0.25, 0.5, 1.0, 2.0, 5.0 atomic units. The
contours increase from 0.1 near the corners, to over 5.0 in regions enclosing the carbon and oxygen
nuclei. Each nucleus is located at local minimum of the mobility function

Fig. 2. The difference between the Fermi hole mobility function F(r) and the electron gas approxima-
tion Fy(p) for the formaldehyde molecule. The contours represent values of 0.0, —0.1, —0.25, —0.5,
—1.0, —2.0, and —5.0, in addition to those indicated in Fig. 1. The contours representing negative
values and zero are indicated by broken lines. Each nucleus is located at a local minimum
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for v=1x, y, and z This may be compared to

Fy(p)=(37/4)(p/2)*" (6)
which provides an estimate of the Fermi hole in a uniform density electron gas.

The Fermi hole mobility function F(r) for the formaldehyde molecule is shown
in Fig. 1. The difference F(r)— Fy(p) is shown in Fig. 2. Regions where F(r)>
Fy(p), that is, the Fermi hole is less sensitive to the position of the probe electron
than it would be in an electron gas of the same density, may be compared to the
loges proposed by Daudel [30-33]. Regions where F(r)> Fy(p) resemble the
boundaries between loges.

Fig. 3. The Fermi hole for the formaldehyde molecule determined by a probe electron located at one
of the protons. The contours indicate electronic density values of 0.005, 0.01, 0.02, 0.04, 0.08, 0.16,
0.32, 0.64, 1.28, and 2.56 electrons per cubic bohr

Fig. 4. The localized orbital for the C-H
bond of a formaldehyde molecule deter-
mined by the orbital centroid criterion of
localization. The electronic density con-
+ tours are the same as in Fig. 3
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When the probe electron is located in a region where F(r)< Fy(p), the Fermi
orbital is found to resemble a localized orbital determined by conventional
methods [3-9]. This similarity is demonstrated by Figs. 3 and 4 which compare
a Fermi hole for the formaldehyde molecule with a localized orbital determined
by the orbital centroid criterion of localization [5-8].

3. Localized orbitals based on the Fermi hole

Eq. 3 provides a direct relationship between a set of canonical SCF orbitals g;(r)
and a localized orbital f;(r)=f(r;r), where r;, is a point in a region where
F(r;) <Fy(p(r;)). In order to transform a set of N canonical SCF orbitals into
a set of N localized orbitals, it is necessary to select N points r, j=1to N, each
of which is located in a region where F(r;)) < Fy(p(r;)). Ideally, each of these
points should correspond to a minimum of F(r) or F(r)— Fy(p). This condition,
however, is not critical, because the Fermi hole is relatively insensitive to the
position of the probe electron when the probe electron is located in one of these
regions.

A set of N Fermi orbitals determined by Eq. 3 is not generally orthonormal.
Each member of this set, however, is usually very similar to one member of an
orthonormal set of conventional localized orbitals. Consequently, the overlap
between a pair of Fermi orbitals is usually very small, and a set of N Fermi
orbitals may easily be converted into an orthonormal set of localized orbitals by
means of the method of symmetric orthogonalization [34]. The resulting unitary
transformation is given by

U=(TT) T, (7)
where
Tij:gj(ri)/(p(ri)/z)l/z- (8)

In the following three sections, the transformation of canonical SCF orbitals to
localized orbitals based on Egs. 7 and 8 is demonstrated for each of three
molecules. The first example, a cyclic conjugated enone, represents a simple case
where conventional methods are not expected to have any special difficulties.
The second example, methyl acetylene, is a molecule for which conventional
methods have serious convergence problems [35]. The third example, boron
trifluoride, is a pathological case for the orbital centroid criterion, with a number
of local maxima and saddle points in the criterion of localization.

In each case, the first step in the application of this method is the selection of
the set of N points. This set always includes the locations of all of the nuclei in
the molecule. For atoms other than hydrogen, the resulting Fermi orbitals are
similar to innershell localized orbitals. When the probe electron is located on a
hydrogen atom, the Fermi orbital is similar to an R-H bond orbital.

Additional points for the probe electron may usually be determined based on
the molecular geometry. The midpoint between two bonded atoms (other than
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hydrogen) tends to yield a Fermi orbital resembling a single bond. Multiple bonds
may be represented with two or three points located roughly one to two bohr
from a point midway between the multiply bonded atoms, along lines perpen-
dicular to a line joining the nuclei. Likewise, lone pair orbitals may be determined
by points located roughly one bohr from the nucleus of an atom which is expected
to possess lone pair orbitals.

4. Application to the furanone molecule

The furanone molecule, C,H,0,, and its derivatives, are useful reagents in 2+2
photochemical cycloadditions [36-38]. The canonical SCF molecular orbitals for
the furanone molecule were calculated with an STO-3G [39] basis set and the
geometry specified in Table 1. The molecular geometry was restricted to C;
symmetry, with a planar five membered ring. Fermi hole localized orbitals were
calculated based on the set of points indicated in Table 1. These points include
the positions of the ten nuclei, as well as twelve additional points determined by
the method outlined above.

Table 1. Molecular geometry and probe electron points for the furanone
(C,H,0,). The first ten points indicate the molecular geometry used in
these calculations. The twelve additional probe electron positions were
determined as described in the text. All coordinates are given in bohr

position X Y V4
atom C-1 0.0 0.0 0.0
atom C-2 0.0 2.589 0.0
atom C-3 2.671 3.355 0.0
atom C-4 4.363 0.940 0.0
atom 0-1 2.534 -1.071 0.0
atom 0-2 3.427 5.548 0.0
atom H-1 —1.802 —1.040 0.0
atom H-2 —1.802 3.629 0.0
atom H-3 5.560 0.858 1.698
atom H-4 5.560 0.858 —1.698
C-1, C-2 bond-1 0.0 1.295 2.000
C-1, C-2 bond-2 0.0 1.295 -2.000
C-2, C-3 bond 1.336 2.972 0.0
C-3, C-4 bond 3.517 2.148 0.0
C-4, 0-1 bond 3.449 —0.066 0.0
C-1, 0-1 bond 1.267 —0.536 0.0
C-3, 0-2 bond-1 3.049 4.452 2.000
C-3, 0-2 bond-2 3.049 4.452 —2.000
0-1 lone pair-1 2.654 —1.821 0.660
0-1 lone pair-2 2.654 —1.821 —0.660
0-2 lone pair-1 2.707 6.298 0.0

0-2 lone pair-2 4.267 5.698 0.0
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Table 2. Orbital centroids for localized orbitals determined by the Fermi hole method and by the
orbital centroid method for the furanone molecule (C,H,0,). All coordinates are given in bohr

Fermi hole method Centroid criterion

Orbital X Y zZ X Y VA

C-1 K shell 0.0003 0.0011 0.0 0.0001 0.0 0.0
C-2 K shell : 0.0009 2.5881 0.0 0.0001 2.5887 0.0
C-3 K shell 2.6708 3.3553 0.0 2.6710 3.3550 0.0
C-4 K shell 4.3626 0.9401 0.0 4.3269 0.9399 0.0
0-1 K shell 2.5340 ~1.0703 0.0 2.5339 —1.0703 0.0
0-2 K shell 3.4273 5.5479 0.0 3.4268 5.5474 0.0
C-1, H-1 bond —-1.1382 —0.7426 0.0 -1.1719 —0.7614 0.0
C-2, H-2 bond —-1.1487 3.3183 0.0 -1.1817 3.3312 0.0
C-4, H-3 bond 5.1490 0.8951 1.1325 5.1559 0.8889 1.1537
C-4, H-4 bond 5.1490 0.8951 -1.1325 5.1559 0.8889 -1.1537
C-1, C-2 bond-1 0.0082 1.4019 0.6357 0.0300 1.4107 0.5998
C-1, C-2 bond-2 0.0082 1.4019 -0.6357 0.0300 1.4107 —0.5998
C-2, C-3 bond 1.3202 3.0542 0.0 1.2847 3.0467 0.0
C-3, C-4 bond 3.5422 2.1909 0.0 3.5654 2.1496 0.0
C-4, 0-1 bond 3.2682 —0.2437 0.0 3.2433 —0.2252 0.0
C-1, 0-1 bond 1.4724 —0.6277 0.0 1.4953 —-0.6136 0.0
C-3, 0-2 bond-1 3.0936 4.5846 0.5480 3.1143 4.6127 0.5112
C-3, 0-2 bond-2 3.0936 4.5846 —(.5480 3.1143 4.6127 —-0.5112
0-1 lone pair-1 2.5548 —1.2836 0.4407 2.5942 ~-1.3110 0.4724
0-1 lone pair-2 2.5548 —1.2836 —-0.4407 2.5942 -1.3110 —-0.4724
0-2 lone pair-1 3.0157 5.8864 0.0 3.0111 5.8920 0.0
0-2 lone pair-2 3.9706 5.5890 0.0 3.9702 5.6005 0.0

The centroids of the localized orbitals determined by the points in Table 1 are
shown in Table 2. The C=C and C=0 double bonds are each represented by
a pair of equivalent bent (banana) bonds similar to those determined by other
methods for transforming canonical SCF orbitals into localized orbitals.

As shown in Table 2, the centroids of the orbitals determined by the Fermi hole
are very close to those of the localized orbitals determined by the orbital centroid
criterion [5-8]. Likewise, the localized orbitals determined by the Fermi hole
were found to be very close to those determined by the orbital centroid criterion.
Each of the localized orbitals determined by the Fermi hole method was found
to have an overlap of 0.994 to 0.999 with one of the localized orbitals determined
by the orbital centroid criterion. The remaining (off-diagonal) overlap integrals
between these two sets of localized orbitals were found to have a root mean
square (RMS) value of 0.011734.

The transformation of a set of canonical SCF orbitals to an orthonormal set of
localized orbitals determined by the Fermi hole required 10 minutes on a PDP-
11/44 computer. The orbital centroid criterion method required 140 minutes
starting from the canonical SCF molecular orbitals or 80 minutes, using the Fermi
localized orbitals as an initial guess, to reach Trys of less than 107>, where Trums
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is the RMS value of the off-diagonal part of the transformation matrix which
converts the orbitals obtained on one iteration to those of the next iteration. The
orbital centroid criterion calculations reported here are based on a partially
quadratic procedure [8] which requires less time than conventional localization
procedures based on 2 X2 rotations.

5. Application to methylacetylene

The localized orbitals of methylacetylene are of interest because of the conver-
gence difficulties encountered in attempts to calculate these orbitals using iterative
localization methods. These difficulties are caused by the weak dependence of
the criterion of localization on the orientation of the three equivalent C-C
(banana) bonds relative to the three C-H bonds of the methyl group. In calcula-
tions based on the orbital centroid criterion, over 200 iterations were required to
determine a set of orbitals which satisfied a very weak criterion of convergence
[35]. Most of these difficulties may be overcome using the quadratically convergent
method which has been developed recently [8]. As shown below, however, the
localized orbitals based on the Fermi hole yield nearly equivalent results and
require much less effort than even the quadratically convergent method.

The canonical SCF molecular orbitals for methylacetylene were determined by
an STO-5G basis set [39] and an experimental geometry [40]. Transformation of
the 11 occupied SCF orbitals into localized orbitals based on the Fermi hole
method required the selection of 11 points. These points are shown in Table 3.
The positions of the nuclei provided 7 of these points. One point was located at
the midpoint of the C,-C; single bond. The remaining three points were located
2 bohr from the C; rotation axis, in a plane perpendicular to the C; rotation axis.
This plane intersects the C; rotation axis at a point midway between the C; and
C, nuclei. These last three points were eclipsed with respect to the methyl protons.

Table 3. Molecular geometry and probe electron positions for the methylacety-
lene molecule. The first seven points indicate the locations of the nuclei. All
coordinates are given in bohr

position X Y z

atom C-1 0.0 —1.1402 0.0
atom C-2 0.0 1.1402 0.0
atom C-3 0.0 3.8972 0.0
atcm H-1 0.0 —3.1452 0.0
atom H-2 -1.9613 4.4383 0.0
atom H-3 0.9807 4.4383 1.6986
atom H-4 0.9807 4.4383 —1.6986
C-1, C-2 bond-1 -2.0 0.0 0.0
C-1, C-2 bond-2 1.0 0.0 1.7321
C-1, C-2 bond-3 1.0 0.0 -1.7321

C-2, C-3 bond 0.0 2.5100 0.0
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Table 4. Orbital centroids for localized orbitals determined by the Fermi hole method and by the
orbital centroid method for the methylacetylene molecule. All coordinates are given in bohr

Fermi hole method Centroid criterion

Orbital X Y Z X Y VA

C-1 K shell 0.0 —1.1410 0.0 0.0 —1.1400 0.0
C-2 K shell 0.0 1.1396 0.0 0.0 1.1340 0.0
C-3 K shell 0.0 3.8964 0.0 0.0 3.8969 0.0
C-1, H-1 bond 0.0 —2.4860 0.0 0.0 -2.5024 0.0
C-3, H-2 bond -1.3022 4.2704 0.0 -1.3162 4.2725 0.0
C-3, H-3 bond 0.6511 4.2704 1.1277 0.6581 4.2725 1.1399
C-3, H-4 bond 0.6511 4.2704 -1.1277 0.6581 4.2725 -1.1399
C-1, C-2 bond-1 —0.7131 —0.0039 0.0 —0.6925 -0.0137 0.0
C-1, C-2 bond-2 0.3565 -0.0039 0.6175 0.3463 -0.0137 0.5997
C-1, C-2 bond-3 0.3565 -0.0039 -0.6175 0.3463 -0.0137 —0.5997
C-2, C-3 bond 0.0 2.4577 0.0 0.0 2.4982 0.0

The centroids of the localized orbitals determined by this method are shown in
Table 4. As expected, the triple bond is represented with three equivalent banana
bonds. The centroids of the corresponding orbitals determined by the orbital
centroid criterion are also shown in Table 4. These are very close to those
determined by the Fermi hole method. The RMS value of the off-diagonal part
of the overlap matrix between the localized orbitals determined by the Fermi
hole and those determined by the orbital centroid criterion is 0.012874.

The Fermi hole method required 1.62 minutes to transform the canonical SCF
molecular orbitals into an orthonormal set of localized molecular orbitals. By
comparison, the (quadratically convergent) orbital centroid method required 26
minutes starting from the canonical SCF molecular orbitals or 19 minutes using
the Fermi localized orbitals as an initial guess to reach Trys of 107° or less.

6. Application to boron trifluoride

As a further example of the application of the Fermi hole localization method,
localized orbitals were also calculated for the boron trifluoride molecule. This
molecule provides a demonstration of how characteristics of little or no physical
significance can cause serious convergence difficulties for iterative localization
methods. A localized representation of boron trifluoride includes four inner-shell
orbitals, three boron fluorine bond orbitals, and nine fluorine lone pair orbitals.
The orbital centroid criterion method shows a small dependence on rotation of
each set of three lone pair orbitals about the corresponding B-F axis. Con-
sequently, the hessian matrix for the criterion of localization as a function of a
unitary transformation of the orbitals has three very small eigenvalues.

The optimal orientation of the fluorine lone pairs may correspond to one of
several possible conformations. One of these, the “pinwheel” conformation, has
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a single lone pair orbital on one of the fluorine atoms in the plane of the molecule.
The other two lone pair orbitals on this fluorine atom are related to the first lone
pair by 120 degree rotations about the F-B axis. The lone pair orbitals on the
other two fluorines are obtained by 120 degree rotations about the C; axis. The
point group of the orbital centroids for this conformation is C;,.

The “three-up” conformation is generated by rotating the set of lone pair orbitals
on each fluorine atom in the pinwheel conformation by 90 degrees about each
F-B axis. The point group for the orbital centroids of this conformation is Cs,.
The “up-up-down” conformation is generated by rotating the set of lone pair
orbitals on one of the fluorine atoms in the “three-up” conformation by 180
degrees about the F-B axis. This conformation has the symmetry of the C; point

group.

The canonical SCF orbitals for BF; were calculated based on the double-zeta
basis set and geometry tabulated by Snyder and Basch [41]. Localized orbitals
determined by the orbital centroid criterion were obtained for the three-up
conformation and the up-up-down conformation. The centroids for these orbitals
are shown in Table 5. The first five (most positive) eigenvalues of the hessian
matrix for each of these conformations are shown in Table 6. All eigenvalues of
the hessian matrix are negative for both of these conformations, indicating that
both conformations are maxima for the sum of squares of the orbital centroids.
The pinwheel conformation, however, was never found. Consequently, it was not
possible to exclude the possibility that the pinwheel conformation was the global
maximum and the three-up conformation was only a local maximum.

The pinwheel conformation can easily be constructed using the Fermi hole
localization method by selecting an appropriate set of probe positions. This set

Table 5. Orbital centroids for localized orbitals determined by the orbital centroid method for the
boron trifluoride molecule. The four innershell orbitals have been excluded from these calculations.
All coordinates are given in bohr

up-up-up (C3,) up-up-down (C;)
Orbital X Y Z X Y Z
B, F-1 bond 1.7258 0.0 —0.0722 1.7256 —0.0001 —0.0707
B, F-2 bond ~0.8629 1.4946 —0.0722 —0.8629 1.4943 -0.0707
B, F-3 bond -0.8629 —1.4946 —0.0722 —0.8627 —1.4942 0.0692
F-1 lone pair 1 2.4451 0.0 0.4874 2.4463 0.0007 0.4871
lone pair 2 2.5968 0.4337 —0.2076 2.5963 0.4334 ~0.2086
lone pair 3 2.5968 —0.4337 —0.2076 2.5963 —0.4339 —-0.2075
F-2 lone pair 1 —1.2226 2.1175 0.4874 —1.2226 2.1188 0.4871
lone pair 2 —0.9228 2.4657 —0.2076 —0.9228 2.4651 —0.2086
lone pair 3 —-1.6740 2.0320 —0.2076 —1.6740 2.0315 —0.2075
F-3 lone pair 1 —-1.2226 —2.1175 0.4874 —1.2237 —2.1196 —0.4869
lone pair 2 -0.9228 —2.4657 —0.2076 —0.9224 —2.4648 0.2086

lone pair 3 —1.6740 —2.0320 ~-0.2076 —1.6734 —2.0312 0.2086
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Table 6. Values of the orbital centroid criterion and the second derivatives of the orbital
centroid criterion for various conformations of localized orbitals for the boron trifluoride
molecule. The row labelled sum indicates the sum of squares of the orbital centroids for
each of the indicated conformations. The following rows indicate the five highest (most
positive) eigenvalues A; of the corresponding hessian matrix. The first and second column
correspond to the localized orbitals described in Table S. The third and fourth columns
refer to the localized orbitals described in Table 8. The gradient vectors are zero for the

first three columns

up-up-up up-up-down pinwheel Fermi hole
sum 69.445 360 69.444 985 69.438 724 69.341 094
Ay —0.019 521 -0.018 174 +0.017 234 +0.031 444
Ay —-0.019 850 ~0.018914 +0.016 238 +0.029 932
Ay —0.019 850 —0.019 095 +0.016 236 +0.029 928
A —0.155 480 —0.153 827 —0.193 521 —0.195 502
As —0.155 484 —0.155 181 —0.194 366 —0.195 524
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of points is shown in Table 7. The centroids of the resulting set of localized
orbitals are shown in Table 8. When this set of localized orbitals is used as the
starting point, the orbital centroid method quickly converges to a stationary point
with C;;, symmetry. The centroids of the resulting set of orbitals are shown in
Table 8. As shown in Table 6, three of the eigenvalues of the hessian matrix were
positive at this point, demonstrating that the pinwheel conformation is a saddle
point with respect to the orbital centroid criterion. These calculations also indicate
that the three-up conformation is probably the global maximum for the orbital

centroid criterion.

Table 7. Probe electron positions for the boron trifluoride molecule. The
first three points are located at the midpoint of the B-F bonds. The
remaining points have been chosen in the pinwheel conformation (sym-

metry Cs,,). All coordinates are given in bohr

position X Y V4

B, F-1 bond 1.2236 0.0 0.0

B, F-2 bond —0.6118 1.0597 0.0

B, F-3 bond -0.6118 —1.0597 0.0

F-1lone pair 1 2.7812 0.9430 0.0
lone pair 2 2.7182 -0.4720 0.8170
lone pair 3 2.7812 —-0.4720 ~0.8170

F-2 lone pair 1 -2.2076 1.9374 0.0
lone pair 2 —0.9816 2.6444 0.8170
lone pair 3 —0.9816 2.6444 —0.8170

F-3 lone pair 1 -0.5736 —~2.8804 0.0
lone pair 2 —1.7996 -2.1724 0.8170
lone pair 3 —1.7996 -2.1724 —0.8170
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Table 8. Orbital centroids for localized orbitals determined by the Fermi hole method and by the
orbital centroid method for the boron trifluoride molecule. The four innershell orbitals have been
excluded from these calculations. All coordinates are given in bohr

Fermi hole Centroid criterion

Orbital X Y V4 X Y y4

B, F-1 bond 1.7137 0.0001 0.0 1.7203 0.0286 0.0

B, F-2 bond —0.8570 1.4840 0.0 —0.8849 1.4755 0.0

B, F-3 bond —0.8570 —1.4840 0.0 ~0.8354 1.5041 0.0

F-1lone pair 1 2.5675 0.4880 0.0 2.6037 0.4849 0.0
lone pair 2 2.5382 —0.2440 0.4140 2.5202 —0.2568 0.4103
lone pair 3 2.5382 —0.2440 ~0.4140 2.5202 -0.2568 —0.4103

F-2 lone pair 1 —1.7064 1.9767 0.0 —-1.7218 2.0125 0.0
lone pair 2 —1.0577 2.3201 0.4140 ~1.0377 2.3109 0.4103
lone pair 3 -1.0577 2.3201 -0.4140 -1.0377 2.3109 —0.4103

F-3 lone pair 1 -0.8612 —2.4676 0.0 —0.8820 -2.4973 . 0.0
lone pair 2 —1.4804 —2.0761 0.4140 —1.4825 —2.0542 0.4103
lone pair 3 —1.4804 —-2.0761 -0.4140 —1.4825 —-2.0542 —0.4103

We do not intend to attribute any special physical significance to any of the lone
pair configurations for BF;. These calculations demonstrate some of the problems,
such as local maxima and saddle points, which may occur for conventional
iterative localization methods. These calculations demonstrate how the Fermi
hole method may be used by itself to transform the canonical SCF orbitals into
localized orbitals without any of these difficulties. In addition, these calculations
demonstrate how the Fermi hole method may be used in conjunction with the
orbital centroid method to establish a characteristic of the orbital centroid criterion
which would have been very difficult to establish using the orbital centroid method
alone.

7. Conclusions

The numerical results presented here demonstrate how the properties of the Fermi
hole may be used to transform canonical SCF molecular orbitals into a set of
localized SCF molecular orbitals. Except for the symmetric orthogonalization,
this method requires no integrals and no iterative transformations. The localized
orbitals obtained from this method are very similar to the localized orbitals
determined by the orbital centroid criterion. The orbitals determined by the Fermi
hole may be used directly in subsequent calculations requiring localized orbitals.
Alternatively, the orbitals determined by this method may be used as a starting
point for iterative localization procedures [3-9].

The necessity of providing the set of probe electron positions may appear to
introduce a subjective element into the localized orbitals determined by the Fermi
hole method. Most of the subjective character to this choice, however, is elimi-
nated by the fact that Fermi hole is relatively insensitive to the location of the
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probe electron whenever the probe electron is located in a region associated with
a strongly localized orbital. This is reflected by the fact that the centroids of the
localized orbitals determined by the Fermi hole method, as shown in Tables 2,
4 and 8, are much closer to the centroids of the corresponding localized orbitals
determined by the orbital centroid criterion than they are to the probe electron
positions used to calculate them.

If the electrons are not strongly localized in certain portions of a molecule, such
as in the lone pairs of a fluorine atom, then the Fermi hole may be more strongly
dependent on the location of the probe electron than where the electrons are
strongly localized. In such cases, the localized orbitals determined by the Fermi
hole method may reflect the locations of the probe electron points more strongly
than they are reflected in well localized regions. In such regions, however, there
may be no physically meaningful way to distinguish between the localized orbitals
determined by this method and those determined by any other method. In these
situations, the Fermi hole method may provide a practical method for avoiding
the convergence problems which may be expected for iterative methods when
the electrons are not well localized.

The electronic structure of most common stable molecules may be described by
an obvious set of chemical bonds, lone pair orbitals, and innershell atomic
orbitals. This is reflected in the success of methods such as molecular mechanics
[42, 43] for predicting the geometries of complex molecules. The localized orbitals
of such molecules are unlikely to be the objects of much interest in themselves,
but they may be useful in the calculation of other properties of a molecule, such
as the correlation energy [44], spectroscopic constants [45, 46], and other proper-
ties [47, 48]. The selection of a set of probe electron positions for one of these
molecules is simple and unambiguous, and the method presented here has
significant practical advantages compared to alternative methods for transforming
canonical SCF molecular orbitals into localized molecular orbitals.

For some molecules, the pattern of bonding may not be unique or it may not be
entirely obvious, even when the geometry is known. For example, two or more
alternative (resonance) structures may be involved in the electronic structure of
such molecules. The localized orbitals of such molecules may be of interest in
themselves, in order to characterize the electronic structure of such molecules,
in addition to their utility in subsequent calculations [44-48]. In order to apply
the current method to such molecules, the Fermi hole mobility function [28, 29]
must be used to resolve any ambiguities which may arise in the selection of the
probe electron positions. If two or more bonding schemes are possible, the
positions of the probe electrons should be chosen to provide the minimum values
of the Fermi hole mobility functions F(r) or the mobility function difference
F(r)-Fy(p).

In the case of methylacetylene, for example, the C-C single bond may be
determined by a single point midway between the carbon atoms, where F(r) is
less than Fy(p). Any attempt to represent this portion of the molecule with a
double bond would require placing a probe electron away from the C-C axis,
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in a region where F(r) is greater than Fy(p). Consequently, it is not possible to
represent methylacetylene with a structure like H-C=C=CH; without placing
one or more probe electron points in regions where the Fermi hole is unstable.

In extreme cases, even the Fermi hole mobility function may fail to provide
unambiguous positions for the probe electrons. This is expected in highly conju-
gated aromatic molecules, metallic conductors, and other highly delocalized
systems. For these electrons, the method presented here, as well as all other
methods for calculating localized orbitals, are entirely arbitrary. The electronic
structure of such a delocalized system may be represented by an unlimited number
of localized descriptions, each of which is equally valid.

If there is a need for imposing a localized description on a highly delocalized
system, the current method would be no less arbitrary than existing alternatives.
The: arbitrariness of the current method would be manifested in the choice of
the probe electron positions for the delocalized electrons. However, the current
method would continue to provide practical advantages over alternative transfor-
mations. These advantages include the absence of integrals to evaluate, the
absence of iteratively repeated calculations, and the absence of convergence
problems.
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